Palatal fibroblasts reduce osteoclastogenesis in murine bone marrow cultures
نویسندگان
چکیده
BACKGROUND Preclinical studies support the assumption that connective tissue grafts preserve the alveolar bone from resorption; the underlying cellular mechanisms, however, remain unknown. The cellular mechanisms may be attributed to the paracrine activity of the palatal fibroblasts. It was thus reasonable to suggest that palatal connective tissue grafts reduce the formation of osteoclasts. METHODS To test this hypothesis, human palatal fibroblasts were examined for their capacity to modulate the formation of osteoclasts in murine bone marrow cultures exposed to RANKL, M-CSF and TGF-β1. Osteoclastogenesis was determined by tartrate-resistant acid phosphatase (TRAP) staining and gene expression analysis. The formation of antigen presenting cells was based on the expression of CD14 and costimmulatory molecules of antigen presenting cells. The paracrine interaction of fibroblasts and the bone marrow was modeled in vitro with inserts of cell-occlusive membranes. RESULTS In cocultures without cell-to-cell contact, palatal fibroblasts caused a decrease in the expression of the osteoclast marker genes in bone marrow cells; calcitonin receptors, cathepsin K, TRAP, and osteoclast-associated receptor. Also the number of TRAP positive multinucleated cells was decreased in the presence of fibroblasts. Notably, palatal fibroblasts increased the expression of CD14 and the co-stimulatory proteins CD40, CD80, and CD86 in bone marrow cells. Bone marrow cells had no considerable impact on fibroblast viability and proliferation marker genes. With regard to cell distribution, osteoclasts were most prominent in the center of the membranes, while fibroblasts accumulated immediately adjacent to the border of the insert forming a ring-like structure on the surface of the culture plate. CONCLUSION The data suggest that palatal fibroblasts provide a paracrine environment that reduces osteoclastogenesis and increases markers of antigen presenting cells. Morover, the paracrine model revealed a joint activity between palatal fibroblasts and bone marrow cells visualized by the characteristic cell distribution in the two separated compartments.
منابع مشابه
Activin A inhibits RANKL-mediated osteoclast formation, movement and function in murine bone marrow macrophage cultures.
The process of osteoclastic bone resorption is complex and regulated at multiple levels. The role of osteoclast (OCL) fusion and motility in bone resorption are unclear, with the movement of OCL on bone largely unexplored. RANKL (also known as TNFSF11) is a potent stimulator of murine osteoclastogenesis, and activin A (ActA) enhances that stimulation in whole bone marrow. ActA treatment does no...
متن کاملLinkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence.
Bone marrow is the principal site for osteoclastogenesis and osteoblastogenesis; and an increase in the former has been linked with bone loss caused by acute loss of gonadal steroids. We have now used an established murine model of accelerated senescence and osteopenia (SAMP6) to test the hypothesis that reduced osteoblastogenesis is linked with decreased bone mass. At 1 mo of age, the number o...
متن کاملMicroRNA-200c Represses IL-6, IL-8, and CCL-5 Expression and Enhances Osteogenic Differentiation
MicroRNAs (miRs) regulate inflammation and BMP antagonists, thus they have potential uses as therapeutic reagents. However, the molecular function of miR-200c in modulating proinflammatory and bone metabolic mediators and osteogenic differentiation is not known. After miR-200c was transduced into a human embryonic palatal mesenchyme (HEPM) (a cell line of preosteoblasts), using lentiviral vecto...
متن کاملTR1, a new member of the tumor necrosis factor receptor superfamily, induces fibroblast proliferation and inhibits osteoclastogenesis and bone resorption.
A newly identified member of the tumor necrosis factor receptor (TNFR) superfamily shows activities associated with osteoclastogenesis inhibition and fibroblast proliferation. This new member, called TR1, was identified from a search of an expressed sequence tag database, and encodes 401 amino acids with a 21-residue signal sequence. Unlike other members of TNFR, TR1 does not contain a transmem...
متن کاملMechanical strain inhibits expression of osteoclast differentiation factor by murine stromal cells.
Normal dynamic loading prevents bone resorption; however, the means whereby biophysical factors reduce osteoclast activity are not understood. We show here that mechanical strain (2% at 10 cycles per minute) applied to murine marrow cultures reduced 1, 25(OH)(2)D(3)-stimulated osteoclast formation by 50%. This was preceded by decreased expression of osteoclast differentiation factor (ODF/TRANCE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2016